

Journal of Alloys and Compounds 262-263 (1997) 253-257

Magnetic and electrical resistivity of RT₂X₂, RTX₂ and RTX intermetallic compounds

V. Ivanov^a, A. Szytuła^{b.*}

^aGeneral Physics Institute, Academy of Sciences, Vavilov Street 38, 117948 Moscow, Russia ^bInstitute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

Ac susceptibility and electrical resistivity studies were carried out on some RT_2X_2 , RTX_2 and RTX intermetallic compounds. The Néel temperatures of these compounds are between 3 K for $TmCo_2Si_2$ up to 75 K for $TbRh_2Ge_2$. The temperature dependencies of the electrical resistivity at high temperatures are typical of metallic conductivity. Anomalies in the temperature dependence of the resistivity near the Néel temperature are observed. © 1997 Elsevier Science S.A.

Keywords: Rare earth intermetallics; Antiferromagnetism; Electrical resistivity

1. Introduction

Recently, R-T-X compounds, where R is a rare earth, T is a transition metal and X is a p-electron metal have been investigated extensively since they show interesting magnetic properties [1].

In this work, the magnetic and electric properties of the following R-T-X compounds with different compositions are reported: the RT_2X_2 composition: LaFe₂Si₂, TmCo₂Si₂, (Dy,Er)Ru₂Si₂, TbRh₂Ge₂, TbCo₂Ge₂; the RTX₂ composition: GdRhSi₂, (Tb,Er)Mn_xGe₂ and the RTX composition: (Ce,Dy)AgSn, GdRhSi. The influence of the composition and of the type of crystal structure on the electrical resistivity is investigated.

2. Experiments and results

The experiments were carried out on the samples prepared by melting the constituent elements (purities 3N for the rare earth and 4N for other elements) in an arc furnace under an argon atmosphere. A homogenization was carried out at 800°C for a week in evacuated and sealed quartz tubes.

The single-phase structure of the compounds was checked by X-ray analysis. The 1:2:2 compounds have the tetragonal $ThCr_2Si_2$ -type of structure. The 1:1:2 compounds crystallize in the orthorhombic CeNiSi_2-type while the 1:1:1 compounds appear in the hexagonal LiGeGa-type (RAgSn) and the orthorhombic TiN-iSi-type (GdRhSi) of crystal structure [1].

The ac magnetic susceptibility was measured using a mutual inductance bridge in the temperature range between 2 and 30 K.

The electrical resistivity R measurements without and in the magnetic field H up to 12.4 kOe were taken in the temperature interval 2-300 K using a conventional four-point-probe method.

The temperature dependence of the magnetic susceptibility shows a low temperature maximum typical of the transition between antiferro- and paramagnetic states. For some compounds an additional phase transition to an ordered state is observed. $LaFe_2Si_2$ is a

^{*}Corresponding author.

^{0925-8388/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved *P11* S0925-8388(97)00392-7

Pauli paramagnet. The determined values of the Néel T_N and the phase transition temperatures T_t are listed in Table 1.

The electrical resistivity R(T) of all investigated compounds increases with increasing temperature, which is characteristic of metallic conductors. The data for some compounds are shown in Fig. 1.

According to Mattheissen's rule [2], the total resistivity of a magnetic material can be written as $R(T) = R_0 + R_{ph}(T) + R_{mag}(T)$ where R_0 is the residual resistivity, $R_{ph}(T)$ is the contribution of an electron-phonon interaction and $R_{mag}(T)$ is the contribution of an electron-spin wave scattering.

The temperature dependence of the resistivity above T_N is described by the function $R(T) = R_0 + R_1T + R_2T^2$. The determined values of R_0 , R_1 and R_2 parameters are given in Table 1. The TbMn_xGe₂ and ErMn_xGe₂ samples have large values of the residual resistivity R_0 which results from a nonstoichiometric composition of these compounds.

In all samples at low temperatures, anomalies around the Néel temperature are observed. The anomalies are clearly visible in the temperature dependence of the dR/dT. The de Gennes and Friedel theory [3] describes well the anomalies observed near critical temperatures.

The following observations were made:

- the electric resistivity curve of LaFe₂Si₂ has a small minimum at $T_k = 10$ K and above T_k it increases linearly with temperature (see Fig. 1a) which suggests the Kondo effect;
- the temperature dependence of the electrical resistivity of $TmCo_2Si_2$, $TbCo_2Ge_2$ and $TbRh_2Ge_2$ shows an anomaly at T_N and a linear dependence above T_N (see Fig. 1b);
- for DyRu₂Si₂ the anomaly in R(T) at T_N and a minimum of the resistivity at 3.2 K is observed;
- for ErRu_2Si_2 , an anomaly only at $T_N = 5.7$ K is observed:

- for GdRhSi₂, the anomalies in the temperature dependence of the electrical resistivity are observed in $T_N = 20.5$ K and $T_t = 5.3$ K;
- the temperature dependence of the electrical resistivity of TbMn_xGe_2 and ErMn_xGe_2 in the whole temperature region between 2 and 300 K was presented in [4]. In this paper, the data at low temperatures only are presented. The anomalous temperature dependence of the electrical resistivity at low temperature for TbMn_xGe_2 and ErMn_xGe_2 is presented in Fig. 2. The resistivity of TbMn_xGe_2 has a minimum at $T_t = 4.67$ K. The value of T_t decreases linearly with increasing magnetic field (see insert in Fig. 2a);
- in zero magnetic field the electrical resistivity of ErMn_xGe_2 has a minimum at $T_t = 17$ K which disappears with an increase of the magnetic field (see Fig. 2b);
- for GdRhSi, CeAgSn and DyAgSn only a bend near the Néel temperature is observed. For CeAgSn near 30 K a bend-point of the electrical resistivity appears which indicates the Kondo effect;

The results of the electric resistivity measured in a varying magnetic field for all the compounds are presented below:

- for LaFe₂Si₂, the electrical resistivity increases with an increase of the magnetic field. This dependence is described by the function R(H) - R(0) = $a(T)H^2$ with $a(T) = 1.4 \times 10^{-3} \ \mu\Omega \ cm/(kOe)^2$ at T = 4.2 K;
- for TmCo₂Si₂, the electrical resistivity decreases with an increase of the magnetic field. The a(T)coefficient is equal to $-2.0 \times 10^{-2} \mu\Omega$ cm/(kOe)² at T = 4.2 K (in the paramagnetic state) and to $-3.5 \times 10^{-2} \mu\Omega$ cm/(kOe)² at 2.0 K (in the antiferromagnetic state);
- for $DyRu_2Si_2$, the external magnetic field H = 12.1

Table 1

Magnetic and electrical resistivity data for some RT₂X₂, RTX₂ and RTX compounds

Compound	7 _N (K)	<i>Т</i> , (К)	R (μΩ cm)		R_0 ($\mu\Omega$ cm)	R_1 ($\mu\Omega$ cm/K)	$R_{2}(\mu\Omega \text{ cm}/\text{K}^{2})$
			7 = 2 K	<i>T</i> = 300 K		•••	6. • ¥
LaFe ₂ Si ₂	Pauli	Paramagnet	39,4	220	1)))	enteringen var enter dette inter an enter det de la	1 1 2 × 1n - 2
TmCo ₂ Si ₂	3		20	\$40	30	3 3	0
TbCo ₂ Ge ₂	32		54	121	50	0.21	0
DyRu ₂ Si ₂	28.5	3.2	8	17		0.12	()
ErRu ₂ Si,	5.7		45	11	a	0.12	0
TbRh ₂ Ge,	75		10.6	675	14	0.10	17540-4
UdRhSi,	20.5	5.3	54	153	14 20	0.20	~ 3.7 X 10 7
TbMn.Ge	27		170	1.76	00 170	0.41	5.7 × 10 ⁻¹
ErMn.Ge	3.4		3135	910 364	179	0.99	-2.2×10^{-2}
GdRhSi	18.5		316	204 134	165	2.54	1.4×10^{-5}
CeAgSn	N S		31.0	120	24	0.56	-1.2×10^{-3}
DeAsSa	0.7		21	150	41	0.46	1.5×10^{-3}
ayngai	9.1		25	165	40	0.51	5.2×10^{-4}

Fig. 1. Temperature variation of the electrical resistivity R and the differential resistivity dR/dT for: (a) LaFe₂Si₂, (b) GdRhSi₂ (c) GdRhSi₂ and (d) TbCo₂Ge₂.

kOe causes a disappearance of the minimum at 3.2 K and a decrease of the Néel temperature from 28.5 K to 26 K. The magnetic field dependence of the electrical resistivity of DyRu₂Si₂ differs at 4.2 K from that at 2.0 K and it has a complicated character. These results are in good agreement with the magnetic data presented in [5] which gave a complicated magnetic phase diagram (H,T) for DyRu₂Si₂ at low temperatures with different magnetic orderings at T = 2 K (square modulated) and at 4.2 K (sine modulated). The R(H) dependences give the values of the critical fields which are in good agreement with those presented in [5];

- the magnetic field dependences of the electrical resistivity of ErRu_2Si_2 have a similar character at 2.0 and 4.2 K. At both temperatures the effect is large and like that observed for DyRu_2Si_2 at 2 K which suggests a square modulated structure below T_N which agrees with the neutron diffraction data [6];
- the electrical resistivity of GdRhSi₂ is a linear function of the magnetic field at T = 2.0 and 4.2 K with $a(T) = 1.2 \times 10^{-2} \ \mu\Omega \ \text{cm/(kOe)}$ at both temperatures;
- the electrical resistivities of GdRhSi, CeAgSn and DyAgSn are square functions of the external magnetic field with a(T) coefficients equal to $2.2 \times$

Fig. 2. (a) Temperature dependence of the electrical resistivity of TbMn_xGe₂ in the temperature range 2-30 K. Low temperature part of the electric resistivity of (b) TbMn_xGe₂ (inset shows the T_t vs. H) and (c) ErMn_xGe₂ and (d) field dependence of the electric resistivity of ErMn_xGe₂ at 2.2 and 4.2 K.

 $10^{-3} \ \mu\Omega \ \text{cm}/(\text{kOe})^2$ at T = 4.2 K and to $2.7 \times 10^{-3} \ \mu\Omega \ \text{cm}/(\text{kOe})^2$ at T = 2.0 for GdRhSi and $2.9 \times 10^{-3} \ \mu\Omega \ \text{cm}/(\text{kOe})^2$ at T = 4.2 K for CeAgSn and $3.0 \times 10^{-3} \ \mu\Omega \ \text{cm}/(\text{kOe})^2$ at T = 4.2 K for DyAgSn.

3. Conclusions

Except for $LaFe_2Si_3$, all the compounds studied are antiferromagnets at low temperatures.

The results presented in this work indicate the metallic character of the electrical conductivity of all the compounds investigated. The parameters characterizing the electrical resistivity of these compounds are similar. The anomalies in the temperature dependence of the electrical resistivity observed at low temperatures are connected with the change in the magnetic ordering. For example, a change in the magnetic order from the square modulated to the sine modulated was observed in $DyRu_2Si_2$.

For RT_2X_2 (excluding LaFe₂Si₂) and for RTX_2 compounds the electric resistivity decreases with increasing magnetic field whereas for RTX compounds it increases.

Acknowledgements

This work has been partially supported by the State Committee for Scientific Research in Poland via Grant 2 P03B 087 08.

References

- A. Szytula, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, 1994.
- [2] E. Gratz, M.J. Zuckerman, in: K.A. Gschneidner, L. Eyring (Eds.), Handbook on Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 1982, chapter 42, p. 117.
- [3] P.G. de Gennes, J. Friedel, J. Phys. Chem. Solids 4 (1958) 71.
- [4] V. Ivanov, A. Szytula, J. Alloys Comp. 225 (1997) L 22.
- [5] B. Andreani, G.L.F. Fraga, A. Garnier, D. Gignoux, D. Maurin, D. Schmitt, T. Shigeoka, J. Phys. Condens. Matter 7 (1995) 1889.
- [6] A. Blaise, R. Kmieć, B. Malaman, E. Ressouche, J.P. Sanchez, K. Tomala, G. Venturini, J. Magn. Magn. Mater. 135 (1994) 171.